1 Overview

The following section provides an example of possible workflow. It is important to note that these are indeed examples of the software’s capabilities and are not intended to be used as scientific advice in a spatial conservation planning process. It is the user’s responsibility to ensure that all analysis decisions are valid.

library(sf)
library(leaflet)
library(tmap)
library(tidyverse)
library(DT)


# set default projection for leaflet
proj <- "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext  +no_defs"

1.1 Landscape Data using Conservation Features

Download the example project folder. This folder contains the Marxan Connect Project file, the input data, and the output data from this example. Feel free to follow along using Marxan Connect by loading tutorial.MarCon.

Before adding connectivity to the mix, let’s have a look at the ‘traditional’ Marxan files which contain only representation targets. The files include reef planning units that cover the Great Barrier Reef and we’ve identified a few bioregion types for which we’ve set conservation targets.

1.1.1 spec.dat

spec <- read.csv("tutorial/CF_landscape/input/spec.dat")
datatable(spec,rownames = FALSE, options = list(searching = FALSE))

1.1.2 puvspr.dat

The table shown here is a trimmed version showing the first 30 rows as an example of the type of data in the puvspr.dat file. The original dataset has 974 entries.

puvspr <- read.csv("tutorial/CF_landscape/input/puvspr2.dat")
datatable(puvspr[1:30,],rownames = FALSE, options = list(searching = FALSE))

1.1.3 pu.dat

The table shown here is a trimmed version showing the first 30 rows as an example of the type of data in the pu.dat file. The original dataset has 653 entries.

pu <- read.csv("tutorial/CF_landscape/input/pu.dat")
datatable(pu[1:30,],rownames = FALSE, options = list(searching = FALSE))

1.1.4 Inital Conservation Feature

This map shows the bioregions and depth classes, which serve as conservation features in the Marxan analysis with no connectivity.

puvspr_wide <- puvspr %>%
    left_join(select(spec,"id","name"),
              by=c("species"="id")) %>%
    select(-species) %>%
    spread(key="name",value="amount")

# planning units with output
output <- read.csv("tutorial/CF_landscape/output/pu_no_connect.csv") %>%
    mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"),
           best_solution = as.logical(best_solution)) %>%
    st_as_sf() %>%
    left_join(puvspr_wide,by=c("pu_id"="pu"))
map <- leaflet(output) %>%
    addTiles()

groups <- names(select(output,-best_solution,-select_freq, -id, -pu_id, -Y_COORD, -X_COORD, -TARGET_FID, -GAZ_LOC_CO, -GBR_NAME, -Join_Count, -PERIMETER, -QLD_NAME, -REEFS_, -REEFS_ID, -REEF_ID, -SUB_ID, -status, -google_land_pu_R))[c(-1,-2)]
groups <- groups[groups!="geometry"]

for(i in groups){
    z <- unlist(data.frame(output)[i])
    if(is.numeric(z)){
        pal <- colorBin("YlOrRd", domain = z)
    }else{
        pal <- colorFactor("YlOrRd", domain = z)
    }

    map = map %>%
        addPolygons(fillColor = ~pal(z),
                    fillOpacity = 0.6,
                    weight=0.5,
                    color="white",
                    group=i,
                    label = as.character(z)) %>%
            addLegend(pal = pal,
                      values = z,
                      title = i,
                      group = i,
                      position="bottomleft")


}
map <- map %>%
    addLayersControl(overlayGroups  = groups,
                     options = layersControlOptions(collapsed = FALSE))

for(i in groups){
    map <- map %>% hideGroup(i)
}
map %>%
    showGroup("BIORE_102")

1.1.5 Adding Connectivity

Let’s begin by examining the spatial layers we’ve added in order to incorporate connectivity into the Marxan analysis. Marxan Connect needs a shapefile for the planning units, the focus areas, and the avoidance areas.These spatial layers are shown in the map below.

# planning units
pu <- st_read("tutorial/CF_landscape/reefs.shp") %>%
    st_transform(proj)

#focus areas (IUCN level I or II protected areas)
fa <- st_read("tutorial/CF_landscape/IUCN_IorII.shp") %>%
    st_transform(proj)

# avoidance areas (ports)
aa <- st_read("tutorial/CF_landscape/ports.shp") %>%
    st_transform(proj)
p <- qtm(pu,fill = '#7570b3') +
    qtm(fa,fill = '#1b9e77') +
    qtm(aa,fill = '#d95f02')
tmap_leaflet(p) %>%
    addLegend(position = "topright",
              labels = c("Planning Units","Focus Areas (IUCN I or II)","Avoidance Areas (ports)"),
              colors = c("#7570b3","#1b9e77","#d95f02"),
              title = "Layers")

1.1.6 connectivity_matrix.csv

The connectivity data is at the ‘heart’ of Marxan Connect’s functionality. It allows the generation of new conservation features based on connectivity metrics.

For the sake of you web browser, this table only contains the frist 7 rows of the connectivity matrix. The real file has 309123 rows.

conmat <- read.csv("tutorial/CF_landscape/IsolationByDistance.csv")
datatable(conmat[1:7,],rownames = FALSE, options = list(searching = FALSE))

In this example, we’ve chosen to append the new connectivity based conservation metrics to the existing Marxan files. We have chosen to use the google page rank metric. Selecting the third page of the appended file, you will find an additional row (26 in this example) with the target for this new connectivity based conservation feature.

1.1.7 spec_appended.dat

spec <- read.csv("tutorial/CF_landscape/input/spec_appended.dat")
datatable(spec,rownames = FALSE, options = list(searching = FALSE))

1.1.8 puvspr_appended.dat

The table shown here is a trimmed version showing the first 30 rows as an example of the type of data in the puvspr_appended.dat file. The original dataset has 1022 rows.

Scrolling through the appended file, you will find additional rows (corresponding to our new conservation feature, which is ‘species 26’ in this example) with the amount of this feature in each planning unit.

puvspr <- read.csv("tutorial/CF_landscape/input/puvspr2_appended.dat")
datatable(puvspr[1:30,],rownames = FALSE, options = list(searching = FALSE))

Finally, running Marxan with the connectivity conservation features results in a different solution.

# planning units with output
output <- read.csv("tutorial/CF_landscape/output/pu_connect.csv") %>%
    mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"),
           best_solution = as.logical(best_solution)
           # fa_included = as.logical(gsub("True",TRUE,.$fa_included)),
           # aa_included = as.logical(gsub("True",TRUE,.$aa_included))
           ) %>%
    st_as_sf()
map <- leaflet(output) %>%
    addTiles()

groups <- c("best_solution","select_freq")

for(i in groups){
    z <- unlist(data.frame(output)[i])
    if(is.numeric(z)){
        pal <- colorBin("YlOrRd", domain = z)
    }else{
        pal <- colorFactor("YlOrRd", domain = z)
    }

    map = map %>%
        addPolygons(fillColor = ~pal(z),
                    fillOpacity = 0.6,
                    weight=0.5,
                    color="white",
                    group=i,
                    label = as.character(z)) %>%
            addLegend(pal = pal,
                      values = z,
                      title = i,
                      group = i,
                      position="bottomleft")


}
map <- map %>%
    addLayersControl(overlayGroups  = groups,
                     options = layersControlOptions(collapsed = FALSE))

for(i in groups){
    map <- map %>% hideGroup(i)
}
map %>%
    showGroup("select_freq")

Here is the output of our example with no connectivity for comparison.

# planning units with output
output <- read.csv("tutorial/CF_landscape/output/pu_no_connect.csv") %>%
    mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"),
           best_solution = as.logical(best_solution)
           # fa_included = as.logical(gsub("True",TRUE,.$fa_included)),
           # aa_included = as.logical(gsub("True",TRUE,.$aa_included))
           ) %>%
    st_as_sf()
map <- leaflet(output) %>%
    addTiles()

groups <- c("best_solution","select_freq")

for(i in groups){
    z <- unlist(data.frame(output)[i])
    if(is.numeric(z)){
        pal <- colorBin("YlOrRd", domain = z)
    }else{
        pal <- colorFactor("YlOrRd", domain = z)
    }

    map = map %>%
        addPolygons(fillColor = ~pal(z),
                    fillOpacity = 0.6,
                    weight=0.5,
                    color="white",
                    group=i,
                    label = as.character(z)) %>%
            addLegend(pal = pal,
                      values = z,
                      title = i,
                      group = i,
                      position="bottomleft")


}
map <- map %>%
    addLayersControl(overlayGroups  = groups,
                     options = layersControlOptions(collapsed = FALSE))

for(i in groups){
    map <- map %>% hideGroup(i)
}
map %>%
    showGroup("select_freq")